Solar Boat Celka

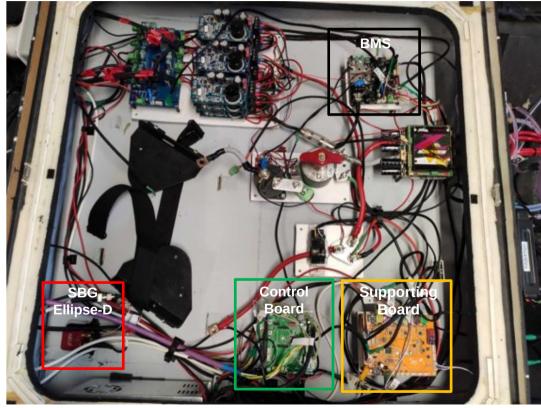
Data Logging and Visualization

Project Objectives

- 1. Log data from subsystems of Solar Boat Celka using CSS CL2000 CAN logger.
- 2. Decode the logged data using a dbc file to extract meaningful information and signals.
- 3. Create a CSV file from the decoded data for seamless integration with InfluxDB.
- 4. Establish a connection between InfluxDB and Grafana for efficient data storage and retrieval.
- 5. Visualize the logged data in Grafana to gain insights, analyze trends, and support decision-making processes.

Logging Data from Subsystems

1. Battery Management System


- manages and monitors the performance and health of the battery system, ensuring optimal utilization and safety.
- 2. Control Board
 - monitors motor parameters, controls motor operations, and regulates the servomechanism of hydrofoils.
- 3. Supporting Board
 - monitors and controls the parameters of various devices such as pumps, fans, and other supporting equipment.
- 4. User Input Board
 - provides an interface for users to input commands and interact with the system, facilitating user control and interaction.

5. SBG Ellipse-D - Inertial Navigation System

• integrates sensors and algorithms for accurate positioning, orientation, and navigation using IMU, EKF, and dual antenna GNSS technology.

Subsystems of Celka

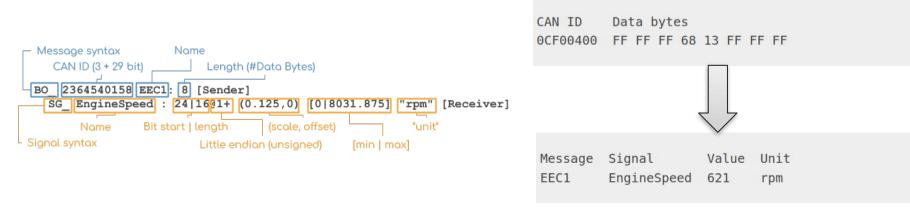
CAN Bus Logger

The CSS CL2000 CAN Logger is a industrial device designed for capturing and logging Controller Area Network (CAN) data.

Logging Features:

- Logs raw CAN data, including timestamps, message IDs, and data payloads in simple CSV style format.
- Configurable logging parameters such as sample rate, message filtering, and storage options.
- Stores logged data on a removable SD card for convenient data retrieval.

Sample Logs:


1	# Logger type: CL2000
2	# HW rev: 8.1x
3	# FW rev: 5.85
4	<pre># Logger ID: CAN_logger_SBT</pre>
5	# Session No.: 177
6	# Split No.: 10
7	# Time: 20230523T065634
8	<pre># Value separator: ";"</pre>
9	# Time format: 3
10	<pre># Time separator: ":"</pre>
11	# Time separator ms: ","
12	# Date separator: ""
13	<pre># Time and date separator: "T"</pre>
14	# Bit-rate: 125000
15	<pre># Silent mode: true</pre>
16	<pre># Cyclic mode: false</pre>
17	Timestamp;ID;Data
18	06:56:33,986;22;7285bf88e71e8af
19	06:56:33,987;23;4a1191101e11000
20	06:56:33,988;0;ff0100000000000
21	06:56:33,989;1;70fd7cfd0000000

Decoding Data with DBC File

CAN DBC (CAN database) file is a text file that stores essential information for decoding raw CAN bus data into meaningful 'physical values'.

Structure of a DBC file:

- Messages
- Signals

Celka DBC file

CAN mess	sages	+ -																				
	Name		CAN ID	HEX 🗸		Туре										DLC			Commer	nt		
0	EKF_VEL		1F			Standard									×	6		< >				
0	SHIP_MOTION_0		20			Standard									×	6		$\hat{\cdot}$				
0	MOTOR_STATUS_ID		21			Standard									~	8		$\hat{}$				
۲	BMS_DATA_ID		22			Standard									~	8		< >				
0	MAIN_BOX_TEMP_ID		23			Standard									~	8		$\hat{}$				
CAN sign	nals (BMS_DATA_ID)	+ -	٦																			
-	ame	Туре		Order	Mc	lode	Start		Lengti	h	Factor		Offset		Min		Ma	ах		Unit	Comment	
									-			_							_			
_	MAX_CELL_VOLTAGE	Unsigned					/ 0	$\hat{}$		\$		$\hat{\cdot}$		\$	_		÷ .		\$			
	MIN_CELL_VOLTAGE	Unsigned				,	16	÷	16	÷	0.0001	÷	0	$\hat{}$	0			5	$\hat{}$	V		
		Unsigned			S:	-	/ 32	$\hat{}$	16	$\hat{}$	0.01	_	Θ	\$	-26	9		500	$\hat{}$	Α		
0 0	CHARGE_CURRENT	Unsigned	~	Intel 🗸	S	Signal 🗸	48	$\hat{}$	16	$\hat{\cdot}$	0.01	\$	Θ	\$	0		\$	100	$\hat{}$	A		
AN sigr	nal preview 🗌																					
BC prev	view (BMS_DATA_ID)																					
	BMS_DATA_ID: 8 MAX_CELL_VOLTAG MIN_CELL_VOLTAG DISCHARGE_CURRE CHARGE_CURRENT	GE : 0 10 GE : 16 1 ENT : 32	16@1+ 16@1+	(0.0001,0) [0 (0.01,0) [-2	5] 0 5] "V" Vecto 500] "A" Ve	or_XXX ector	XXX														

Creating CSV File for InfluxDB

Extended Annotated CSV File

- file format used for storing data that will be integrated with InfluxDB,
- provides additional metadata and annotations specifying how CSV data should be converted to line protocol.

Line protocol

- text-based format used to insert data into the InfluxDB,
- defines the structure and syntax for representing data points in InfluxDB.

<pre>17 Timestamp;ID;Data 18 06:56:33,986;22;7285bf88e71e8afe 19 06:56:33,987;23;4a1191101e110000 20 06:56:33,988;0;ff0100000000000 21 06:56:33,989;1;70fd7cfd00000000</pre>	<pre>1 #group, false, false, false, true, true, false, false 2 #datatype, string, long, dateTime:RFC3339, string, string, double, string 3 #default_result,,,,, 4 ,result, table, _time, _measurement, _field, _value, symbol 5 ,0,2023-06-03T06:56:33.986Z, BMS_DATA_ID, MAX_CELL_VOLTAGE, 3.4162,V 6 ,0,2023-06-03T06:56:33.986Z, BMS_DATA_ID, MIN_CELL_VOLTAGE, 3.5007,V 7 ,0,2023-06-03T06:56:33.986Z, BMS_DATA_ID, DISCHARGE_CURRENT, 79.11, A 8 ,0,2023-06-03T06:56:33.986Z, BMS_DATA_ID, DISCHARGE_CURRENT, 79.11, A 9 ,0,2023-06-03T06:56:33.987Z, MAIN_BOX_TEMP_ID, TEMP1, 44.26,C 10 ,0,2023-06-03T06:56:33.987Z, MAIN_BOX_TEMP_ID, TEMP1, 44.26,C 11 ,0,2023-06-03T06:56:33.987Z, MAIN_BOX_TEMP_ID, TEMP3, 43.82,C 12 ,0,2023-06-03T06:56:33.988Z, MOTOR_POWER, MAIN_MOTOR_POT, 51.1,% 13 ,0,2023-06-03T06:56:33.988Z, MOTOR_POWER, PADDLE_MOTOR_POT, 0.0,% 14 ,0,2023-06-03T06:56:33.989Z, HYDROFOIL_ANGLES, LEFT_ANGLE, -6.56, 15 ,0,2023-06-03T06:56:33.989Z, HYDROFOIL_ANGLES, RIGHT_ANGLE, -6.44,</pre>
--	---

InfluxDB - Time-Series Database

InfluxDB is a high-performance, open-source time series database designed for collecting, storing, and analyzing time-stamped data.

Key Features:

- Time Series Data
- High Write and Query Performance
- Query Language: InfluxQL and Flux
- Data Retention Policies
- Integration

Use Cases:

- Internet of Things (IoT) applications
- DevOps and infrastructure monitoring
- Real-time analytics and anomaly detection

Uploading data to InfluxDB

To log in to the local server, users utilize the following URL: http://localhost:8086/.

- Create bucket in InfluxDB:
- The bucket is name "DA_" within the InfluxDB project.
- Create an API token:
- A token is create specifically for the Grafana integration "DA_".
- Import data from the prepared CSV file to created bucket.
- Example code:

This query retrieves data from the "DA" bucket, filters it based on measurement, field, and symbol criteria, and then applies the desired aggregation function, such as calculating the mean values within 5-second intervals.

VINDOW PERIOD

derivative

Grafana - Data Visualization and Monitoring

Grafana is a popular open-source visualization and analytics platform designed for monitoring, analyzing, and visualizing data.

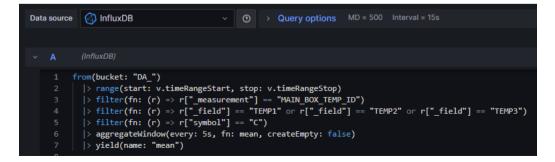
Key Features:

- Data Visualization
- Dashboard Creation
- Data Source Integration
- Alerting and Notifications

Use Cases:

- Real-time Monitoring
- DevOps and IT Operations
- Business Intelligence
- IoT Data Visualization

Connecting InfluxDB with Grafana


http://localhost:8086/	orgs/ec40c2449ca376cd
·	
InfluxDB URL	Organization

- Access the local Grafana server through the following URL: <u>http://localhost:3000/.</u>
- Set InfluxDB as the new data source
- Set "Query Language" to Flux
- Specify InfluxDB details
 - Default Bucket,
 - Token
 - InfluxDB URL

НТТР					
URL		http://	localhost	:8086	
Allowed cookies		New t	ag (enter	key to add)	Add
Timeout		Timeo	ut in seco	onds	
Auth					
Basic auth			With Cre	dentials	
TLS Client Auth			With CA	Cert	
Skip TLS Verify					
Forward OAuth Identity					
Basic Auth Details User Password	user				
Custom HTTP Headers + Add header InfluxDB Details					
Organization	ec40	c2449ca	376cd		
Token	config	gured			Rese
Default Bucket	DA_				
Min time interval 🕕	10s				
Max series 🕦	1000				

Visualizing Data with Grafana

- Three dashboards have been created for data visualization:
 - Celka Telemetry Basic Info
 - SGB Ellipse-D IMU
 - Voltages & currents
- For each dashboard, the corresponding time when the data was collected has been specified:
 - from 2023-06-03 08:06:21 to 2023-06-03 10:15:12
- The charts have been configured so that the position graph added to each dashboard shows the exact location where the data was collected.
- Flux queries generated via Query Builder tool in InfluxDB have been used to acquire data for visualization.
- Many charts from Time Series to GeoMap are available for data visualization.

Demonstration and Results

Conclusion

Successful achievements:

- Logged data from subsystems of Solar Boat Celka.
- Developed a custom script for:
 - decoding the logged data using a dbc file,
 - creating extended annotated CSV file for InfluxDB input.
- Established a connection between InfluxDB and Grafana.
- Visualized the logged data in Grafana.

Future plans:

- Migrate the system to a remote server for improved accessibility and scalability.
- Developing real-time telemetry of Celka boat.